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Evolution matrix in a coherence vector formulation for 
quantum Markovian master equations of N-level systems 

K Lendi 
Institute of Physical Chemistry, University of Zurich, CH-8057 Zurich,  Switzerland 
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Abstract. Quantum Markovian master equations in N dimensions are  systematically 
transformed into vector form by using the Lie algebra of the special unitary group S U ( N ) .  
Density operators are  represented through coherence vectors and  the infinitesimal 
Kossakowski generator of completely positive quantum dynamical semigroups appears as  
a real evolution matrix that is not completely diagonalisable, in general. A complete 
classification of the spectrum of the latter and  its Jordan canonical form, together with all 
types of associated stationary states, is given in detail. The results of this analysis are  
particularly suited for computations in practical applications. 

1. Introduction 

In the quantum theory of irreversible processes considerable progress has been made 
in recent years by introducing the concept of completely positive quantum dynamical 
semigroups (Kossakowski 1972a, b, Gorini et a1 1976, 1978). It guarantees that the 
time evolution of an open system preserves the basic quantum mechnical properties 
of density operators as required by the von Neumann conditions. In particular, for 
N-level systems the structure of quantum Markovian master equations is therefore 
completely known and is, of course, of considerable value for a wide range of potential 
applications in any kind of spectroscopy. Surprisingly, very little has been done 
(Pottinger and Lendi 1984, 1985, Lendi 1986) and preference seems to be given to 
inventing purely phenomenological equations. This may partly be due to the fact that 
the theory is usually not formulated in a way that is easily accessible to practical 
applications. 

The aim of this paper is to provide such a formulation by introducing the coherence 
vector concept and to show, in a systematic way, how to transform a rather complicated 
matrix equation to a linear inhomogeneous first-order differential equation for this 
coherence vector. The complete classification of the spectral properties of the associated 
evolution matrix is then of central importance, as shown in B 3. Finally, we give an 
explicit analysis of the different possible types of final destination states in 5 4. For 
further theoretical details and applications to spectroscopic problems the reader is 
referred to the fourthcoming publication of Kossakowski er a1 (1986). 

2. The Kossakowski generator as evolution matrix 

Quantum Markovian master equations for N-level systems are given by a matrix 
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16 K Lendi 

differential equation for an ( N  x N )  density matrix p, in the form 

P I  = a 1  (2.1) 

where 3 is the infinitesimal generator of a completely positive quantum dynamical 
semigroup of time translations 

AI  = e x p ( 2 t )  t 3 0. (2.2) 

The basic structure theorem (Gorini et a /  1976) states that 2 can generally be represen- 
ted in a so-called Kossakowski-normal form 

where 

H = H *  T r ( H ) = O  

A ={a , , }?  A = A * Z O  

Tr( F , )  = 0 Tr( F,FZ) = 1 s i, k s M (2.6) 

M = N 2 - l .  (2.7) 

with the abbreviation 

Recall that the time evolution 

d j r :  P I  = Aipo (2.8) 
has the property of strictly preserving the von Neumann conditions 

Pr=PT P I > O  M P I )  = 1 t 2 O  (2.9) 
with the convention of denoting by p > 0 a matrix with associated positive quadratic 
form. 

Without loss of generality one may choose a complete orthonormalised set of 
Hermitian matrices: 

{F,J;M F, = FT (2.10) 

to fulfil (2.6) and a particularly simple choice is offered by the infinitesimal generators 
of the special unitary group SU( N ) ,  whose systematic construction will be briefly 
summarised. Start with the simple ( N  x N)  matrices P",k' whose elements P$' are 
all zero except for one: 

(2.11) PLt '  = 8,,6,/, ( 1 6 i, k, p, v s N ) .  

Next, by taking linear combinations for i # k, 

(2.12) 

(2.13) 

N (  N - 1 )  Hermitian and  traceless matrices are constructed. The projectors P"-" are 
finally used to build up  N - 1 further matrices through 

(2.14) 
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Thus there is a set M = {S(' ,A' ,  J",", D"'}  of M = N 2  - 1 matrices which are orthonor- 
malised with respect to the trace metric due to the relation following from (2.11): 

Tr( p'1.k 1 p (  m.n 1 = 6,nskrn. (2.15) 

Its completeness follows from standard arguments of linear algebra. Consequently, 
any Hermitian ( N  x N )  matrix X = X *  can be represented in a unique way by 

(2.16) 

( U ,  is the unit matrix in N dimensions) by taking for { F k } P  the set A, for instance, 
the numbering being a matter of convenience. Since these Fk can be shown to be 
infinitesimal generators of unitary transformations in N dimensions with determinant 
equal to one (Lichtenberg 1970, Georgi 1982) they form the Lie algebra of SU( N )  with 

(2.17) 

where { 9 ,  * }  denotes an anticommutator and  thef and d are completely antisymmetric 
or symmetric structure constants (with respect to interchange of any pair of indices). 

We are now in position to proceed to the construction of the evolution matrix G. 
For this purpose, the time-dependent density matrix p, is decomposed into 

(2.19) 

where the v i (  t )  are real-valued functions of time with 

and bounded by certain restrictions to be discussed in the next section. Thus time 
evolution of p, is given by transformations of a so-called coherence vector 

U( t )  = (U]( t ) ,  u2( t ) ,  . . . , v,v lYM' (2.21) 

in a real M-dimensional vector space, and  the differential equation equivalent to the 
quantum Markovian master equation (2.1) 

U( t )  = Go(t) + k (2.22) 

is of the simplest linear inhomogeneous evolution type with real matrix elements g,, 
of G and real k, of course. According to Hamiltonian and non-Hamiltonian contribu- 
tions to the Kossakowski generator 3 in (2.3) we decompose 

G = Q + R  (2.23) 

and also (see (2.4)) 

M 

H = h,F, h,ER 
n = I  

(2.24) 
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and find, by using (2.17)-(2.21), the general formulae for the matrix elements qIh of 
Q, rlk of R and the components k, of k,  

(2.25) 

1.m.n- I 1,m.n = I 

(2.26) 

(2.27) 

with Re( .  ) and Im( 9 ) the real and imaginary parts of a quantity. The important 
symmetry relations are as follows: 

Q T =  -Q (2.28) 

R ~ =  R for arbitrary A iff N = 2 (2.29) 

R'= R f o r 3 s N < a i f f  A = A T .  (2.30) 

In  all other cases R has no definite symmetry. This shows that, in general, the evolution 
matrix G is of no definite symmetry either, with the consequence that the solutions of 
(2.22) may be complicated and have to be analysed carefully. Before we do  that (in 
§ 3 )  it is worthwhile to mention the case of purely reversible dynamics characterised by 

(2.31) A = O ( R  = 0, k = o ) +  G ~ =  -G 

such that the Frobenius norm 

llPlll'= Tr(P:) (2.32) 

or, equivalently, the otherwise time-dependent length v( t )  of the coherence vector, 

(2.33) 

becomes a constant of motion due to the skew symmetry of G. This is the reason why, 
for classical dynamical systems, the original non-linear equations are transformed, 
whenever possible, to the above linear quantum-like structure and then a complete set 
of constants of motion can be found (Lax 1968, Moser 1980). 

3. The spectrum of G and general solutions 

Since G is asymmetric its eigenvalues Ak are, in general, complex quantities and we 
denote by a [ G ]  the whole spectrum: 

a [ G ]  = { A h  = +iVk}y l * k ,  vh E R  (3.1) 

which must be subjected to restrictions following from the von Neumann conditions 
(2.9). In fact, the latter imply that 

(3.2) o s 77 ( t )  s (1 - I /  N ) I / ~  t 3 O  
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and, trivially, the solutions of (2.22) must therefore be bounded for all times. The 
second important property of G is its asymmetry with the somewhat uncomfortable 
consequence that i t  may not be completely diagonalisable. In  such a case we denote 
by J[Ak ; d , ]  the Jordan block associated with an eigenvalue A k  of multiplicity dh and 
by R\$'G R'" '  the corresponding subspace. The spectrum U, together with the Jordan 
normal form of G, is then classified in terms of three subsets: 

U [  G] = ( ~ ( ' 1  U a('' (3.3) 

U " ' =  {A,}? PI. G 0, vA arbitrary (but vk f 0 for = 0). (3.4) 

uld '=  pl < 0, vk arbitrary. (3.5) 

each of them giving rise to a qualitatively different solution of the evolution equation: 

If A k  = A k  = .  * ( d k  -fold)then G is diagonalisable in Iw:: '; 

Only dl -fold (> 1)  sequences AI = A l  = .  . . and G is non-diagonalisable in R\$) with 
Jordan block J [ h ,  ; d , ] ;  

M U ' ~ ' = { A , , , } ~ ~ ~  A,, = 0. 

G is diagonalisable in Rb"-L-". 
In  correspondence to (3.3)-( 3.6), the complete solution of the homogeneous part 

(3.7) 

of (2.22): 

U (  t )  = Gu( t )  

is given by 

u ( t )  = u " ' ( r ) + u i d J ( t ) + u ' " '  

s = ( s l ,  s * ,  . . . , S & f ) T  

together with the constants for the initial condition, 

where 

(3.8) 

(3.9) 

K 

u " ' ( t )  = s k  exp(Akt)x'k' (3.10) 
k = l  

I A i  c V I  " 1  

(3.12) 

and where the special summation from 1 = { K + l} until { L }  in the second summand 
indicates that I runs only over the indices I' of different Jordan blocks J [ A , . ,  4.1. 
Furthermore, {xi"}: and { ~ " " } f + ~  are right-eigenvectors of G and the components 
of the vectors p y ) ( t )  are polynomials at most of degree ( q  - 1) in t 

S,X(m) 

m = L - I  

(3.13) 

the constant vector y y '  being a solution of 

( G  - A l l  y ) q ~ y '  = 0. (3.14) 
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The detailed proofs follow from standard algebra (Gantmacher 1958). Note that the 
constants (3.9) are obtained from the initial condition U( o )  through 

s = T-'u(O)  (3 .15 )  

where T is a matrix with the linearly independent vectors x C k ' ,  y;'  and x'"') as columns 
and, therefore, the inverse exists always. Finally, we recall that u ( t )  can always be 
written in real form since for any complex conjugate pair, e.g. hk = h k + l  E girl, the 
corresponding two summands in (3.10) may be combined to give 

exp ( p k t ) [ S k ( W ( I )  cos V k f  - w(*)  sin v k t ) + s k + l ( w ( l )  sin v k f +  w ( * )  cos v k ' k f ) ]  (3.16) 

(3.17) 

In the next section, the present results will be used to classify all stationary states of 
(2.1) or, equivalently, (2.22). 

4. Relaxing semigroups 

The question about existence and nature of final destination states for irreversible 
processes in open quantum systems is of particular interest in connection with the 
approach to equilibrium (Alicki 1976, Spohn and  Lebowitz 1978). By equilibrium one 
usually means either a thermodynamic equilibrium or else any stationary state. Due 
to the linearity of the dynamical equations there are only stationary states for t + CO 

but of quite different properties. In any case we introduce formally 

or, equivalently in the coherence vector language, 

u ( x I  = lim u ( t )  
1 - x  

where u ( r )  is now the general solution of equation (2.22), 

(4.2) 

u ( t )  = U( t ) +  w (4.3 1 
with U( t )  a solution of the homogeneous part ( 3 . 7 )  and w a particular solution obtained 
from 

G w + k = O .  (4.4) 

Again, the spectral properties of G will lead to the distinction of three qualitatively 
different types of so-called relaxing semigroups A I  (equation (2.8)).  

( i )  A semigroup .I, is called uniquely relaxing if the limit (4.1) exists and is 
independent of any initial conditions po.  

This means that p ' l '  is exclusively determined by the semigroup generator 
2?(Yp'=' = O ) ,  or else by the evolution matrix G and the vector k. Furthermore, this 
type of stationary state is an invariant state or a fixed point of the mapping ,Il : 

p ( x '  = .&p(" ' ,  (4.5) 
Since we have 

U( 1 )  = exp( Gr)u(O) u ( 0 )  = o(0) - w (4.6) 
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equation (4.5) implies 

lim U( t )  = 0 
I - =  

21 

(4.7) 

and, according to (3.10)-(3.12), this is only possible for 

det( G )  # 0. (4.8) 

Thus, one can identify 

W w = -G-'k (4.9) = 

and the spectral properties of G are characterised by a restriction on (3 .3):  

c[ G ]  = 6"' U g r d '  (4.10) 

where 6."' differs from ais '  in (3.4) by the stronger requirement p A  < O .  Although it 
would be desirable to relate the discussed properties of G to those of A in (2.3) this 
seems to be a rather inaccessible task in general and  there is only one useful theorem 
known. This is due to Spohn (1976) who proved that a sufficient condition for '2, to 
be uniquely relaxing is given for a relaxation matrix A with n ,  zero eigenvalues if 

2no < M .  (4.11) 

Note that this condition is not always necessary, however, and the details may be more 
subtle and admit unique relaxation even in cases where (4.1 1 )  is violated (Kossakowski 
er al 1986). 

(ii) A semigroup '1, is called relaxing if the limit (4.1) exists but depends on the 
initial condition p o .  

Whereas in case ( i )  the stationary states could be obtained by setting U( t )  = 0 ( P I  = 0)  
this is not so in this case since the limit (4.7) is different from zero: 

U ( = )  = Iim U( t )  
7-x 

(4.12) 

and, therefore, in contrast to (4.9) one has 

U' ' = "+ w. (4.13) 

As is clear from the spectral analysis in  5 3 ,  equation (4.12) with U" # 0 implies that 
G has at least one eigenvalue zero and thus the spectrum is characterised by 

g [ G ] =  ~ ' s ~ u g ' d ' u g ' o ' .  (4.14) 

As a consequence, w in (4 .3)  or (4.13) cannot be obtained as in (4.9) but must be 
calculated from equation (4.4) which may have no solution at all if k is incompatible 
and then equation (2.22) has no bounded solution either. On the other hand, if k is 
compatible (4.4) has infinitely many solutions but let us consider this case in more 
detail. Denote by 

I = rank( G )  A = M - r  (4.15) 

the rank and deficiency index of G and by k"' a k vector whose components fulfil 
the A compatibility relations. The equation 

Gw + k"'= 0 (4.16) 
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admits a A-parametric set of solutions (infinitely many) but despite this there is only 
one solution u ( t )  since in  the latter the parameter dependence of w is exactly com- 
pensated by u(0) because the initial condition u ( 0 )  = u(0) + w must not depend on any 
of these parameters, of course. Note that (4.6) is always valid irrespective of the 
spectral properties of G and, therefore, u(OC) and D ( ~ )  depend upon u ( 0 )  only. Finally, 
one can state that every initial condition u ( 0 )  (or po), together with the elements of G 
and a compatible k'"', uniquely determine the final state u ( ~ )  (or p ( - ' )  and the fixed 
point property (4.5) is lost. Thus there are as many stationary states as there are initial 
conditions. 

( i i i )  A semigroup A ,  is called partially relaxing if the limit (4.1) does not exist but 
there is a decomposition of pI in terms of two orthogonal projectors P and Q ( P +  Q = 
U,) such that 

lim Q ~ , Q  = pig' (4.17) 
1-x  

(4.18) 

Here pSp1 is a matrix whose non-zero elements are purely periodic functions of time. 
This is the case for a spectrum of G given by the general formula (3.3) but with the 
special requirement for U''' to necessarily contain eigenvalues A,: with ph = 0 whereas 
do) may be empty or not. The relaxing part pLQ1 can then be classified according to 
( i )  or ( i i )  regarding the dependence on initial conditions. 

5. Conclusion 

The coherence vector formulation is a systematic generalisation to N dimensions of 
common relaxation treatments that lead to the well known Bloch equations for two-level 
systems (Allen and Eberly 1975). Remarkably, already for N = 2 one obtains more 
general equations than the usual Bloch equations and finds interesting connections to 
recent experiments (Lendi 1986, Kossakowski et a1 1986). 

The detailed spectral analysis of the evolution matrix G presented has been based 
on two basic properties, one requiring boundedness of solutions and the other its 
asymmetry. However, it has been supposed that asymmetry may imply non-diagonalisa- 
bility and therefore a non-trivial Jordan canonical form although this is not a necessary 
consequence of asymmetry. Since it is unusual to deal with non-diagonalisable matrices 
in problems of real physical importance one might conjecture that, due to the special 
formula (2 .26)  involving structure constants of the Lie algebra, the matrix G also 
acquires some unrevealed structure such that it is diagonalisable despite its asymmetry. 
That there is no general mathematical proof for diagonalisability can, of course, be 
shown by giving a counterexample. In order to avoid too lengthy formulae and 
estimates involving all inequalities derived from the most important property (2.5) we 
quote it, as far as possible, numerically for N = 2 ( M  = 3). Consider, thus, a matrix 
G fulfilling all necessary requirements stated in 0 3. For instance, 

-17 - 1  

G='( 2 
-17 :) 

0 -16 
(5.1) 
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(5.3) 

with the decomposition (2.23) given by 
0 -1 -f 

-z 2 

G is not completely diagonalisable with the Jordan canonical form 

.I[G]=[i --: 0 -9 :). 
The constant vector k in (2.22) is chosen to be 

k = (k ,  , k2, / ~ 3 ) ~ =  -a( 1, 0, l)T. (5.4) 
All one has to show is that the original relaxation matrix A in the Kossakowski 
generator 2 is positive semidefinite, indeed. For completeness, we give the inversion 
formulae as obtained from equations (2.26) and ( 2 . 2 7 )  by using f i ls  = J2 and d,2s = 0 
(for the normalised Pauli matrices): 

a l l  = - 3 r 2 2 + r 3 3 - r l l )  = -4( r l  + r3s - r 2 2 )  (5.5) 
Q33 = -3 r11+ r22 - r 3 3 )  a , 2 =  r I 2 - i k 3 / a  ( 5 . 6 )  

aI3  = r l S + i k 2 / a  a23 = r23 - i k , I a .  (5.7) 
Thus we find 

16 4i 3 
A=L[-:i 4 ly4i 1;;) (5.8) 

23 

(5.2) 

which is even a positive matrix since all leading minors are positive. Therefore, time 
evolution carries density operators into density operators and the semigroup is uniquely 
relaxing since de t (G)  f 0. For further details and applications to problems in magnetic 
and optical resonance spectroscopy the reader is referred to Kossakowski et a1 (1986). 
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